A Remark on the Rank of Positive Semidefinite Matrices Subject to Affine Constraints

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Remark on the Rank of Positive Semidefinite Matrices Subject to Affine Constraints

Let K n be the cone of positive semideenite n n matrices and let A be an aane subspace of the space of symmetric matrices such that the intersection K n \ A is non-empty and bounded. Suppose that n 3 and that codim A = ? r+2 2 for some 1 r n?2. Then there is a matrix X 2 K n \A such that rank X r. We give a short geometric proof of this result, use it to improve a bound on realizability of weig...

متن کامل

Low-Rank Optimization on the Cone of Positive Semidefinite Matrices

We propose an algorithm for solving optimization problems defined on a subset of the cone of symmetric positive semidefinite matrices. This algorithm relies on the factorization X = Y Y T , where the number of columns of Y fixes an upper bound on the rank of the positive semidefinite matrix X. It is thus very effective for solving problems that have a low-rank solution. The factorization X = Y ...

متن کامل

Regression on Fixed-Rank Positive Semidefinite Matrices: A Riemannian Approach

The paper addresses the problem of learning a regression model parameterized by a fixedrank positive semidefinite matrix. The focus is on the nonlinear nature of the search space and on scalability to high-dimensional problems. The mathematical developments rely on the theory of gradient descent algorithms adapted to the Riemannian geometry that underlies the set of fixed-rank positive semidefi...

متن کامل

Matrices with High Completely Positive Semidefinite Rank

A real symmetric matrix M is completely positive semidefinite if it admits a Gram representation by positive semidefinite matrices (of any size d). The smallest such d is called the completely positive semidefinite rank of M , and it is an open question whether there exists an upper bound on this number as a function of the matrix size. We show that if such an upper bound exists, it has to be a...

متن کامل

A Sparse Decomposition of Low Rank Symmetric Positive Semidefinite Matrices

Suppose that A ∈ RN×N is symmetric positive semidefinite with rank K ≤ N . Our goal is to decompose A into K rank-one matrices ∑K k=1 gkg T k where the modes {gk} K k=1 are required to be as sparse as possible. In contrast to eigen decomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where A is the covariance function and is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 2001

ISSN: 0179-5376,1432-0444

DOI: 10.1007/s004540010074